Framework层的Binder(源码分析篇)

您所在的位置:网站首页 acquire receive区别 Framework层的Binder(源码分析篇)

Framework层的Binder(源码分析篇)

2023-04-13 06:58| 来源: 网络整理| 查看: 265

开篇

本篇以aosp分支android-11.0.0_r25作为基础解析

我们在之前的文章中,从驱动层面分析了Binder是怎样工作的,但Binder驱动只涉及传输部分,待传输对象是怎么产生的呢,这就是framework层的工作了。我们要彻底了解Binder的工作原理,不仅要去看驱动层,还得去看framework层以及应用层(AIDL)

ServiceManagergetIServiceManager

我们还是以第一次见到Binder的地方ServiceManager开始分析,我们选取getService方法来分析(这个方法既有入参也有返回),抛除掉它缓存和log的部分,最核心的代码就一句getIServiceManager().getService(name)

private static IServiceManager getIServiceManager() { if (sServiceManager != null) { return sServiceManager; } // Find the service manager sServiceManager = ServiceManagerNative .asInterface(Binder.allowBlocking(BinderInternal.getContextObject())); return sServiceManager; }BinderInternal.getContextObject

我们从BinderInternal.getContextObject()开始看起,这个函数是一个native函数,他被实现在frameworks/base/core/jni/android_util_Binder.cpp中

static jobject android_os_BinderInternal_getContextObject(JNIEnv* env, jobject clazz) { sp b = ProcessState::self()->getContextObject(NULL); return javaObjectForIBinder(env, b); }ProcessState

我们在这里可以发现一个比较关键的类ProcessState,它是一个负责打开binder驱动并进行mmap映射的单例对象,这从它的self函数就可以看出来,每个进程只存在一个ProcessState实例

位置:frameworks/native/libs/binder/ProcessState.cpp

sp ProcessState::self() { Mutex::Autolock _l(gProcessMutex); if (gProcess != nullptr) { return gProcess; } gProcess = new ProcessState(kDefaultDriver); return gProcess; }

我们来看看它的构造函数

ProcessState::ProcessState(const char *driver) : mDriverName(String8(driver)) , mDriverFD(open_driver(driver)) //打开binder驱动 , mVMStart(MAP_FAILED) , mThreadCountLock(PTHREAD_MUTEX_INITIALIZER) , mThreadCountDecrement(PTHREAD_COND_INITIALIZER) , mExecutingThreadsCount(0) , mMaxThreads(DEFAULT_MAX_BINDER_THREADS) , mStarvationStartTimeMs(0) , mBinderContextCheckFunc(nullptr) , mBinderContextUserData(nullptr) , mThreadPoolStarted(false) , mThreadPoolSeq(1) , mCallRestriction(CallRestriction::NONE) { if (mDriverFD >= 0) { // mmap the binder, providing a chunk of virtual address space to receive transactions. mVMStart = mmap(nullptr, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0); ... } }

这里的:后是c++构造函数初始化赋值的一种语法,可以看到其中调用了open_driver函数打开binder驱动

static int open_driver(const char *driver) { //打开binder驱动 int fd = open(driver, O_RDWR | O_CLOEXEC); int vers = 0; //验证binder版本 status_t result = ioctl(fd, BINDER_VERSION, &vers); if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) { ... } //设置binder最大线程数 size_t maxThreads = DEFAULT_MAX_BINDER_THREADS; result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads); return fd; }

这里做了三件事,打开binder驱动、验证binder版本、设置binder最大线程数,接着构造函数调用mmap建立binder映射,这里面的实现我们已经在Android源码分析 - Binder驱动(上)、(中)、(下)中分析过了,感兴趣的同学可以回过头去看一看

ProcessState::self函数执行完后,当前进程的binder初始化工作已经执行完毕,接下来我们回过头来看它的getContextObject函数

sp ProcessState::getContextObject(const sp& /*caller*/) { sp context = getStrongProxyForHandle(0); if (context == nullptr) { ALOGW("Not able to get context object on %s.", mDriverName.c_str()); } // The root object is special since we get it directly from the driver, it is never // written by Parcell::writeStrongBinder. internal::Stability::tryMarkCompilationUnit(context.get()); return context; }

我们在binder驱动篇就提到了,handle句柄0代表的就是ServiceManager,所以这里调用getStrongProxyForHandle函数的参数为0

sp ProcessState::getStrongProxyForHandle(int32_t handle) { sp result; AutoMutex _l(mLock); //查找或建立handle对应的handle_entry handle_entry* e = lookupHandleLocked(handle); if (e != nullptr) { IBinder* b = e->binder; if (b == nullptr || !e->refs->attemptIncWeak(this)) { if (handle == 0) { //当handle为ServiceManager的特殊情况 //需要确保在创建Binder引用之前,context manager已经被binder注册 Parcel data; status_t status = IPCThreadState::self()->transact( 0, IBinder::PING_TRANSACTION, data, nullptr, 0); if (status == DEAD_OBJECT) return nullptr; } //创建BpBinder并保存下来以便后面再次查找 b = BpBinder::create(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b; } else { result.force_set(b); e->refs->decWeak(this); } } return result; }ProcessState::handle_entry* ProcessState::lookupHandleLocked(int32_t handle) { const size_t N=mHandleToObject.size(); //新建一个handle_entry并插入到vector中 if (N checkSubclass(&gBinderOffsets)) { // It's a JavaBBinder created by ibinderForJavaObject. Already has Java object. jobject object = static_cast(val.get())->object(); return object; } BinderProxyNativeData* nativeData = new BinderProxyNativeData(); nativeData->mOrgue = new DeathRecipientList; nativeData->mObject = val; jobject object = env->CallStaticObjectMethod(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mGetInstance, (jlong) nativeData, (jlong) val.get()); if (env->ExceptionCheck()) { // In the exception case, getInstance still took ownership of nativeData. return NULL; } BinderProxyNativeData* actualNativeData = getBPNativeData(env, object); //如果object是刚刚新建出来的BinderProxy if (actualNativeData == nativeData) { //处理proxy计数 ... } else { delete nativeData; } return object; }

我们先看一看这个gBinderProxyOffsets是什么

static struct binderproxy_offsets_t { // Class state. jclass mClass; jmethodID mGetInstance; jmethodID mSendDeathNotice; // Object state. //指向BinderProxyNativeData的指针 jfieldID mNativeData; // Field holds native pointer to BinderProxyNativeData. } gBinderProxyOffsets; const char* const kBinderProxyPathName = "android/os/BinderProxy"; static int int_register_android_os_BinderProxy(JNIEnv* env) { ... jclass clazz = FindClassOrDie(env, kBinderProxyPathName); gBinderProxyOffsets.mClass = MakeGlobalRefOrDie(env, clazz); gBinderProxyOffsets.mGetInstance = GetStaticMethodIDOrDie(env, clazz, "getInstance", "(JJ)Landroid/os/BinderProxy;"); gBinderProxyOffsets.mSendDeathNotice = GetStaticMethodIDOrDie(env, clazz, "sendDeathNotice", "(Landroid/os/IBinder$DeathRecipient;Landroid/os/IBinder;)V"); gBinderProxyOffsets.mNativeData = GetFieldIDOrDie(env, clazz, "mNativeData", "J"); ... }

可以看到,gBinderProxyOffsets实际上是一个用来记录一些java中对应类、方法以及字段的结构体,用于从native层调用java层代码

接下来我们看javaObjectForIBinder函数的具体内容

jobject javaObjectForIBinder(JNIEnv* env, const sp& val) { if (val == NULL) return NULL; //JavaBBinder返回true,其他类均返回flase if (val->checkSubclass(&gBinderOffsets)) { // It's a JavaBBinder created by ibinderForJavaObject. Already has Java object. jobject object = static_cast(val.get())->object(); return object; } ... }

首先有一个IBinder类型检查的判断,我看了一圈发现目前只有当IBinder的实际类型为JavaBBinder的时候会返回true,其他子类均返回false。JavaBBinder类继承自BBinder,里面保存了对java层Binder对象的引用,所以在这种情况下,直接返回里面的object就好了。

从这里可以看出,native层的javaBBinder与java层的Binder是对应关系

我们这里传进来的是BpBinder,会接着往下走

jobject javaObjectForIBinder(JNIEnv* env, const sp& val) { ... BinderProxyNativeData* nativeData = new BinderProxyNativeData(); nativeData->mOrgue = new DeathRecipientList; nativeData->mObject = val; jobject object = env->CallStaticObjectMethod(gBinderProxyOffsets.mClass, gBinderProxyOffsets.mGetInstance, (jlong) nativeData, (jlong) val.get()); ... }

接着实例化一个BinderProxyNativeData,将Binder死亡回调DeathRecipientList和Binder对象(这里为BpBinder)赋值给它,然后调用java层方法。gBinderProxyOffsets之前说过了,类为android.os.BinderProxy,方法为getInstance,所以这里调用的即为android.os.BinderProxy.getInstance(nativeData, iBinder),BinderProxy的路径为frameworks/base/core/java/android/os/BinderProxy.java

private static BinderProxy getInstance(long nativeData, long iBinder) { BinderProxy result; synchronized (sProxyMap) { try { result = sProxyMap.get(iBinder); if (result != null) { return result; } result = new BinderProxy(nativeData); } catch (Throwable e) { // We're throwing an exception (probably OOME); don't drop nativeData. NativeAllocationRegistry.applyFreeFunction(NoImagePreloadHolder.sNativeFinalizer, nativeData); throw e; } NoImagePreloadHolder.sRegistry.registerNativeAllocation(result, nativeData); // The registry now owns nativeData, even if registration threw an exception. sProxyMap.set(iBinder, result); } return result; }

这里的逻辑比较简单,以iBinder为 key 尝试从sProxyMap取出BinderProxy,如果取到值了就直接将它返回出去,如果没取到,用之前传进来的BinderProxyNativeData指针为参数实例化一个BinderProxy,并将其设置到sProxyMap中

从这里可以看出每一个服务的BinderProxy都是以单例形式存在的,并且native层的BinderProxyNativeData与java层的BinderProxy是对应关系

BinderProxyNativeData* getBPNativeData(JNIEnv* env, jobject obj) { return (BinderProxyNativeData *) env->GetLongField(obj, gBinderProxyOffsets.mNativeData); } jobject javaObjectForIBinder(JNIEnv* env, const sp& val) { ... BinderProxyNativeData* actualNativeData = getBPNativeData(env, object); //如果object是刚刚新建出来的BinderProxy if (actualNativeData == nativeData) { //处理proxy计数 ... } else { delete nativeData; } return object; }

接下来判断我们通过BinderProxy.getInstance方法获得的BinderProxy是不是刚刚创建出来的,如果是新建的则需要处理一下proxy计数,这里是通过对比BinderProxy中的mNativeData和我们新建出来的nativeData地址判断的

ServiceManagerNative.asInterface

我们将目光放回getIServiceManager方法,现在我们知道BinderInternal.getContextObject()方法返回了ServiceManager对应的BinderProxy,接着会调用Binder.allowBlocking方法,这个方法只是改变了BinderProxy中的一个参数,使其允许阻塞调用,这样的话getIServiceManager就可以被简化成如下代码

private static IServiceManager getIServiceManager() { if (sServiceManager != null) { return sServiceManager; } // Find the service manager sServiceManager = ServiceManagerNative .asInterface(/* BinderProxy */); return sServiceManager; }

我们看到asInterface方法实际上是直接实例化了一个ServiceManagerProxy对象

public static IServiceManager asInterface(IBinder obj) { if (obj == null) { return null; } // ServiceManager is never local return new ServiceManagerProxy(obj); }ServiceManagerProxy

从名字就能听出来,ServiceManagerProxy其实是一个代理类,它其实是IServiceManager.Stub.Proxy的代理,实际上是没有什么必要的,可以发现作者也在注释中标注了This class should be deleted and replaced with IServiceManager.Stub whenever mRemote is no longer used,我们看一下它的构造方法

public ServiceManagerProxy(IBinder remote) { mRemote = remote; mServiceManager = IServiceManager.Stub.asInterface(remote); }

ServiceManagerProxy实现了IServiceManager接口,但这个方法的实现都是直接调用mServiceManager,以addService举例

public void addService(String name, IBinder service, boolean allowIsolated, int dumpPriority) throws RemoteException { mServiceManager.addService(name, service, allowIsolated, dumpPriority); }

这与直接使用IServiceManager.Stub.asInterface(remote)得到IServiceManager并没有什么区别

IServiceManager

我们将重点转到IServiceManager上,我们在源码中搜索不到IServiceManager.java文件,因为实际上这个文件是通过aidl生成的

关于aidl我们到后面再详细分析,现在我们只需要知道它其实是辅助我们进行binder通信的一种工具,aidl文件会在编译过程中生成出与之对应的java文件

IServiceManager的aidl文件路径为frameworks/native/libs/binder/aidl/android/os/IServiceManager.aidl

我们来看一下它生成出的IServiceManager.Stub.asInterface方法

public static android.os.IServiceManager asInterface(android.os.IBinder obj) { if ((obj == null)) { return null; } android.os.IInterface iin = obj.queryLocalInterface(DESCRIPTOR); if (((iin != null) && (iin instanceof android.os.IServiceManager))) { return ((android.os.IServiceManager) iin); } return new android.os.IServiceManager.Stub.Proxy(obj); }

这里我们传入的IBinder是BinderProxy,它的queryLocalInterface永远返回null,所以这里返回的是IServiceManager.Stub.Proxy对象,我们接着看之前调用的getService方法

@Override public android.os.IBinder getService(java.lang.String name) throws android.os.RemoteException { android.os.Parcel _data = android.os.Parcel.obtain(); android.os.Parcel _reply = android.os.Parcel.obtain(); android.os.IBinder _result; try { _data.writeInterfaceToken(DESCRIPTOR); _data.writeString(name); boolean _status = mRemote.transact(Stub.TRANSACTION_getService, _data, _reply, 0); _reply.readException(); _result = _reply.readStrongBinder(); } finally { _reply.recycle(); _data.recycle(); } return _result; }Parcel

Parcel是一个存放读取数据的容器,它的基本功能和使用相信进阶Android开发应该都懂,我们在这里只介绍一些关键性函数的含义,其他就不多赘述了,有机会的话以后单独开一章分析它

函数作用obtain获取一个新的Parcel对象ipcData、data数据区首地址ipcDataSize、dataSize数据大小ipcObjects偏移数组首地址ipcObjectsCountIPC对象数量dataPosition数据指针当前的位置dataCapacity数据区的总容量(始终 >= dataSize)

这里获取了两个Parcel,一个_data用来传递参数数据,一个_reply用来接收回应。接着,_data首先调用writeInterfaceToken方法,这里的token是客户端与服务端的一个协定,服务端会校验我们写入的这个token,然后按照顺序将参数依次写入到_data中(序列化),然后通过binder调用远程服务真正的方法,然后检查异常。

对于无返回值的方法来说,到这一步已经结束了,但我们这个方法是有返回值的,所以我们需要一个_result,从_reply中读取出数据(反序列化),赋给_result,然后返回出去

BinderProxy.transact

我们重点看transact这一部分,通过我们之前的分析,我们知道mRemote是一个BinderProxy类型的对象,我们来看他的transact方法

public boolean transact(int code, Parcel data, Parcel reply, int flags) throws RemoteException { //检查Parcel大小 Binder.checkParcel(this, code, data, "Unreasonably large binder buffer"); ... //trace ... //Binder事务处理回调 ... //AppOpsManager信息记录 ... try { final boolean result = transactNative(code, data, reply, flags); if (reply != null && !warnOnBlocking) { reply.addFlags(Parcel.FLAG_IS_REPLY_FROM_BLOCKING_ALLOWED_OBJECT); } return result; } finally { ... } }

我这里简化了一下代码,可以看到,首先就是对Parcel大小的检查

static void checkParcel(IBinder obj, int code, Parcel parcel, String msg) { if (CHECK_PARCEL_SIZE && parcel.dataSize() >= 800*1024) { // Trying to send > 800k, this is way too much. StringBuilder sb = new StringBuilder(); sb.append(msg); sb.append(": on "); sb.append(obj); sb.append(" calling "); sb.append(code); sb.append(" size "); sb.append(parcel.dataSize()); sb.append(" (data: "); parcel.setDataPosition(0); sb.append(parcel.readInt()); sb.append(", "); sb.append(parcel.readInt()); sb.append(", "); sb.append(parcel.readInt()); sb.append(")"); Slog.wtfStack(TAG, sb.toString()); } }

Android默认设置了Parcel数据传输不能超过800k,当然,各个厂商是可以随意改动这里的代码的,如果超过了的话,便会调用Slog.wtfStack打印日志,需要注意的是,在当前进程不是系统进程并且系统也不是工程版本的情况下,这个方法是会结束进程的,所以在应用开发的时候,我们需要注意跨进程数据传输的大小,避免因此引发crash

省去中间的一些log、回调,接下来便是调用transactNative方法,这是一个native方法,实现在frameworks/base/core/jni/android_util_Binder.cpp中

static jboolean android_os_BinderProxy_transact(JNIEnv* env, jobject obj, jint code, jobject dataObj, jobject replyObj, jint flags) // throws RemoteException { if (dataObj == NULL) { jniThrowNullPointerException(env, NULL); return JNI_FALSE; } Parcel* data = parcelForJavaObject(env, dataObj); if (data == NULL) { return JNI_FALSE; } Parcel* reply = parcelForJavaObject(env, replyObj); if (reply == NULL && replyObj != NULL) { return JNI_FALSE; } IBinder* target = getBPNativeData(env, obj)->mObject.get(); if (target == NULL) { jniThrowException(env, "java/lang/IllegalStateException", "Binder has been finalized!"); return JNI_FALSE; } //log ... status_t err = target->transact(code, *data, reply, flags); //log ... if (err == NO_ERROR) { return JNI_TRUE; } else if (err == UNKNOWN_TRANSACTION) { return JNI_FALSE; } signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/, data->dataSize()); return JNI_FALSE; }

这里首先是获得native层对应的Parcel并执行判断,Parcel实际上功能是在native中实现的,java中的Parcel类使用mNativePtr成员变量保存了其对应native中的Parcel的指针

然后调用getBPNativeData函数获得BinderProxy在native中对应的BinderProxyNativeData,再通过里面的mObject域成员变量得到其对应的BpBinder,这个函数在之前分析javaObjectForIBinder的时候已经出现过了

BpBinder.transact

之后便是调用BpBinder的transact函数了

status_t BpBinder::transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { // Once a binder has died, it will never come back to life. //判断binder服务是否存活 if (mAlive) { ... status_t status = IPCThreadState::self()->transact( mHandle, code, data, reply, flags); if (status == DEAD_OBJECT) mAlive = 0; return status; } return DEAD_OBJECT; }

这里有一个Alive判断,可以避免对一个已经死亡的binder服务再发起事务,浪费资源,除此之外便是调用IPCThreadState的transact函数了

IPCThreadState

路径:frameworks/native/libs/binder/IPCThreadState.cpp

还记得我们之前提到的ProcessState吗?IPCThreadState和它很像,ProcessState负责打开binder驱动并进行mmap映射,而IPCThreadState则是负责与binder驱动进行具体的交互

IPCThreadState也有一个self函数,与ProcessState的self不同的是,ProcessState是进程单例,而IPCThreadState是线程单例,我们来看看它是怎么实现的

IPCThreadState* IPCThreadState::self() { //不是初次调用的情况 if (gHaveTLS.load(std::memory_order_acquire)) { restart: //初次调用,生成线程私有变量key后 const pthread_key_t k = gTLS; //先从线程本地储存空间中尝试获取值 IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k); if (st) return st; //没有的话就实例化一个 return new IPCThreadState; } //IPCThreadState shutdown后不能再获取 if (gShutdown.load(std::memory_order_relaxed)) { ALOGW("Calling IPCThreadState::self() during shutdown is dangerous, expect a crash.\n"); return nullptr; } //首次获取时gHaveTLS为false,会先走这里 pthread_mutex_lock(&gTLSMutex); if (!gHaveTLS.load(std::memory_order_relaxed)) { //创建一个key,作为存放线程本地变量的key int key_create_value = pthread_key_create(&gTLS, threadDestructor); if (key_create_value != 0) { pthread_mutex_unlock(&gTLSMutex); ALOGW("IPCThreadState::self() unable to create TLS key, expect a crash: %s\n", strerror(key_create_value)); return nullptr; } //创建完毕,gHaveTLS置为true gHaveTLS.store(true, std::memory_order_release); } pthread_mutex_unlock(&gTLSMutex); //回到gHaveTLS为true的case goto restart; }

gHaveTLS是一个原子类型的bool值,它在存取过程中需要指定内存序std::memory_order_xxx,在这里我们直接忽略掉,把它当成一个纯粹的bool值就好了

在这里,TLS的全称为Thread Local Storage,表示线程本地储存空间,和java中的ThreadLocal其实是一个作用

当一个线程初次获取IPCThreadState的时候,会先走到gHaveTLS为false的case,此时程序会创建一个key,作为存放线程本地变量的key,创建成功后将gHaveTLS置为true,然后goto到gHaveTLS为true的case,此时线程本地储存空间中暂时还是没有数据的,所以会new一个IPCThreadState出来,在IPCThreadState的构造函数中,会将自己保存到线程本地储存空间中,这样,当线程第二次再获取IPCThreadState的时候,便会直接走到pthread_getspecific这里获取并返回

IPCThreadState::IPCThreadState() : mProcess(ProcessState::self()), mServingStackPointer(nullptr), mServingStackPointerGuard(nullptr), mWorkSource(kUnsetWorkSource), mPropagateWorkSource(false), mIsLooper(false), mIsFlushing(false), mStrictModePolicy(0), mLastTransactionBinderFlags(0), mCallRestriction(mProcess->mCallRestriction) { pthread_setspecific(gTLS, this); clearCaller(); mIn.setDataCapacity(256); mOut.setDataCapacity(256); }

我们通过构造函数可以发现,它调用了pthread_setspecific函数将自身保存在了线程本地储存空间中

IPCThreadState中,成员变量mIn用于接收来自binder设备的数据,mOut用于储存发往binder设备的数据,他们的默认容量都为256字节

transact

我们接着看它的transact函数

status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { LOG_ALWAYS_FATAL_IF(data.isForRpc(), "Parcel constructed for RPC, but being used with binder."); status_t err; flags |= TF_ACCEPT_FDS; //log ... err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, nullptr); if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { //binder事务不为TF_ONE_WAY //当线程限制binder事务不为TF_ONE_WAY时 if (UNLIKELY(mCallRestriction != ProcessState::CallRestriction::NONE)) { if (mCallRestriction == ProcessState::CallRestriction::ERROR_IF_NOT_ONEWAY) { //这个限制只是log记录 ALOGE("Process making non-oneway call (code: %u) but is restricted.", code); CallStack::logStack("non-oneway call", CallStack::getCurrent(10).get(), ANDROID_LOG_ERROR); } else /* FATAL_IF_NOT_ONEWAY */ { //这个限制会终止线程 LOG_ALWAYS_FATAL("Process may not make non-oneway calls (code: %u).", code); } } if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } //log ... } else { err = waitForResponse(nullptr, nullptr); } return err; }

这个函数的重点在于writeTransactionData和waitForResponse,我们依次分析

writeTransactionDatastatus_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data tr; tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */ //目标binder句柄值,ServiceManager为0 tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; tr.cookie = 0; tr.sender_pid = 0; tr.sender_euid = 0; const status_t err = data.errorCheck(); if (err == NO_ERROR) { //数据大小 tr.data_size = data.ipcDataSize(); //数据区起始地址 tr.data.ptr.buffer = data.ipcData(); //传递的偏移数组大小 tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t); //偏移数组的起始地址 tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = reinterpret_cast(statusBuffer); tr.offsets_size = 0; tr.data.ptr.offsets = 0; } else { return (mLastError = err); } //这里为BC_TRANSACTION mOut.writeInt32(cmd); mOut.write(&tr, sizeof(tr)); return NO_ERROR; }

在分析这个函数之前,我们需要先回忆一下在前面binder驱动章节我们所学习的binder结构和通信过程:Android源码分析 - Binder驱动(中)

binder_tansaction首先会读取一个请求码cmd,当binder请求码为BC_TRANSACTION/BC_REPLY的时候,binder驱动所接收的参数为binder_transaction_data结构体,所以在这个函数中,我们将binder请求码(这里为BC_TRANSACTION)和binder_transaction_data结构体依次写入到mOut中,为之后binder_tansaction做准备

waitForResponse

数据准备好后,接着便来到了waitForResponse函数

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { uint32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = (uint32_t)mIn.readInt32(); IF_LOG_COMMANDS() { alog mDriverFD < 0) { return -EBADF; } binder_write_read bwr; // Is the read buffer empty? //dataPosition >= dataSize说明上一次读取到的数据已经消费完 const bool needRead = mIn.dataPosition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. //需要写的数据大小,这里的doReceive默认为true,如果上一次的数据还没读完,则不会写入任何内容 const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (uintptr_t)mOut.data(); // This is what we'll read. if (doReceive && needRead) { //将read_size设置为读缓存可用容量 bwr.read_size = mIn.dataCapacity(); //设置读缓存起始地址 bwr.read_buffer = (uintptr_t)mIn.data(); } else { bwr.read_size = 0; bwr.read_buffer = 0; } // Return immediately if there is nothing to do. //没有要读写的数据就直接返回 if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { //调用binder驱动的ioctl if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) err = NO_ERROR; else err = -errno; if (mProcess->mDriverFD < 0) { err = -EBADF; } } while (err == -EINTR); if (err >= NO_ERROR) { //写数据被消费了 if (bwr.write_consumed > 0) { //写数据没有被消费完 if (bwr.write_consumed < mOut.dataSize()) LOG_ALWAYS_FATAL("Driver did not consume write buffer. " "err: %s consumed: %zu of %zu", statusToString(err).c_str(), (size_t)bwr.write_consumed, mOut.dataSize()); else { //写数据消费完了,将数据大小设置为0,这样下次就不会再写数据了 mOut.setDataSize(0); processPostWriteDerefs(); } } //读到了数据 if (bwr.read_consumed > 0) { //设置数据大小及数据指针偏移,这样后面就可以从中读取出来数据了 mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } return NO_ERROR; } return err; }

这里的binder_write_read也是一个我们熟悉的结构,我们在之前的文章Android源码分析 - Binder驱动(中)中了解过,关于binder通信的代码,我们需要结合着binder驱动一起看才能理解

在binder驱动层中,binder_ioctl_write_read函数会从用户空间读取一个binder_write_read结构,这个结构体主要描述了数据传输的大小和位置以及消费情况(已读/写数据大小),这么看来,talkWithDriver函数的结构就很清晰了:

创建出binder_write_read结构,根据之前的读取情况,决定是否读写数据,设置写数据内容和大小,设置读数据的空间和容量调用binder驱动的ioctl重置写缓存,根据ioctl的结果设置读缓存

这之后,waitForResponse函数就可以从读缓存mIn中读到数据了,我们回到这个函数中,发现它首先从读缓存中读取了一个binder响应码,然后根据这个响应码再处理接下来的工作

处理Reply

在此之前,我们先回顾一下一次binder_tansaction的整个过程,根据事务类型,分为两种情况:

TF_ONE_WAY 非 TF_ONE_WAY

我们先对照着看TF_ONE_WAY的情况

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { switch (cmd) { ... case BR_TRANSACTION_COMPLETE: //当TF_ONE_WAY模式下收到BR_TRANSACTION_COMPLETE直接返回,本次binder通信结束 if (!reply && !acquireResult) goto finish; break; ... } } }

对于TF_ONE_WAY模式来说,客户端在收到BR_TRANSACTION_COMPLETE响应码后则返回,不会再等待BR_REPLY

而对于非TF_ONE_WAY模式来说,客户端不仅会收到BR_TRANSACTION_COMPLETE响应码,之后还会阻塞等待binder驱动给它发来BR_REPLY响应码,这之后一次binder_transaction才算完成

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { switch (cmd) { ... case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); //失败直接返回 if (err != NO_ERROR) goto finish; if (reply) { //客户端需要接收replay if ((tr.flags & TF_STATUS_CODE) == 0) { //正常reply内容 reply->ipcSetDataReference( reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), freeBuffer /*释放缓冲区*/); } else { //内容只是一个32位的状态码 //接收状态码 err = *reinterpret_cast(tr.data.ptr.buffer); //释放缓冲区 freeBuffer(nullptr, reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t)); } } else { //客户端不需要接收replay //释放缓冲区 freeBuffer(nullptr, reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t)); continue; } } goto finish; ... } } }

一般来说,非TF_ONE_WAY模式肯定是需要一个reply来接收的,即reply != null,此时我们来看看接收正常reply的过程(接收32位状态码没什么好说的,直接从读缓冲区中强制类型转换出一个32位的code就完事了)

这里我们就需要看一下Parcel的ipcSetDataReference函数了

void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const binder_size_t* objects, size_t objectsCount, release_func relFunc) { // this code uses 'mOwner == nullptr' to understand whether it owns memory LOG_ALWAYS_FATAL_IF(relFunc == nullptr, "must provide cleanup function"); //先清理重置一下数据和状态 freeData(); auto* kernelFields = maybeKernelFields(); LOG_ALWAYS_FATAL_IF(kernelFields == nullptr); // guaranteed by freeData. mData = const_cast(data); mDataSize = mDataCapacity = dataSize; kernelFields->mObjects = const_cast(objects); kernelFields->mObjectsSize = kernelFields->mObjectsCapacity = objectsCount; mOwner = relFunc; //检查数据 binder_size_t minOffset = 0; for (size_t i = 0; i < kernelFields->mObjectsSize; i++) { binder_size_t offset = kernelFields->mObjects[i]; if (offset < minOffset) { ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n", __func__, (uint64_t)offset, (uint64_t)minOffset); kernelFields->mObjectsSize = 0; break; } const flat_binder_object* flat = reinterpret_cast(mData + offset); uint32_t type = flat->hdr.type; //binder类型出现异常 if (!(type == BINDER_TYPE_BINDER || type == BINDER_TYPE_HANDLE || type == BINDER_TYPE_FD)) { ... kernelFields->mObjectsSize = 0; break; } minOffset = offset + sizeof(flat_binder_object); } scanForFds(); }

其实这个函数也不复杂,我们知道binder_mmap做到了一次拷贝,将数据拷贝到了内核物理内存中,然后将其与用户空间虚拟内存做了映射,所以这个函数此时只需要将数据的地址,大小等等无脑赋值进去,客户端后续便可以用Parcel提供的函数方便的从中读取数据了

freeBuffer

最后我们再来看一下freeBuffer这个释放缓冲区的方法,

void IPCThreadState::freeBuffer(Parcel* parcel, const uint8_t* data, size_t /*dataSize*/, const binder_size_t* /*objects*/, size_t /*objectsSize*/) { ... if (parcel != nullptr) parcel->closeFileDescriptors(); IPCThreadState* state = self(); state->mOut.writeInt32(BC_FREE_BUFFER); state->mOut.writePointer((uintptr_t)data); state->flushIfNeeded(); }

可以看到,这里向binder驱动发送了一个BC_FREE_BUFFER请求,然后binder驱动会负责回收这块缓冲区内存

我们在Parcel::ipcSetDataReference函数中可以发现,它将freeBuffer函数指针赋值给了mOwner,等到什么时候不需要这个Parcel了,便会调用这个函数进行缓冲区内存回收

结束

到这里,我们客户端与binder驱动沟通交互的分析就结束了,相比binder驱动而言,framework层的binder就好理解多了,

更多 Android Framework 知识点参考

如需要参考完整版的学习文档可以 点击下方小卡片传达 或 回复 666 货取!!!



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3